1 Solve the equation $|3-2 x|=4|x|$.

2 Express $1<x<3$ im th $\quad|x-a|<b$, where a and b are to be determined.

3 Fig. 1 shows the graphs of $y=|x|$ and $y=a|x+b|$, where a and b are constants. The intercepts of $y=a|x+b|$ with the x - and y-axes are $(-1,0)$ and $\left(0, \frac{1}{2}\right)$ respectively.

Fig. 1
(i) Find a and b.
(ii) Find the coordinates of the two points of intersection of the graphs.

4 Solve the inequality $|2 x+1| \geqslant 4$.

5 Solve the equation $|2 x-1|=|x|$.

6 Given that $\mathrm{f}(x)=|x|$ and $\mathrm{g}(x)=x+1$, sketch the graphs of the composite functions $y=\operatorname{fg}(x)$ and $y=\operatorname{gf}(x)$, indicating clearly which is which.

7 Solve the inequality $|x-1|<3$.
$8 \quad$ Fig. 4 shows a sketch of the graph of $y=2|x-1|$. It meets the x - and y-axes at $(a, 0)$ and $(0, b)$ respectively.

Fig. 4

Find the values of a and b.

9 Solve the inequality $|2 x-1| \leqslant 3$.

10 Fig. 1 shows the graphs of $y=|x|$ and $y=|x-2|+1$. The point P is the minimum point of $y=|x-2|+1$, and Q is the point of intersection of the two graphs.

Fig. 1
(i) Write down the coordinates of P .
(ii) Verify that the y-coordinate of Q is $1 \frac{1}{2}$.

11 Solve the equation $|3 x-2|=x$.

12 Solve the equation $|3 x+2|=1$.

